Testing Agricultural Technologies in Northern Ghana: A Seed Experiment

Federica Di Battista
(Research Coordinator, IPA Ghana)

May 9th, Accra
Overview

1) Stating the problem: low agricultural productivity
2) The TAT project: describing the experiment
3) Results from the 2015 trials
4) Preliminary results from the 2016 farmers experiment
5) Implications for agricultural productivity in northern Ghana
6) Conclusions and policy recommendations
The problem: Low Agricultural Productivity in Ghana

Stating the problem

Maize Yields in Ghana

- FAO - actual productivity
- FAO - hybrids estimated productivity
- DIRTS Annual Survey
Testing Agricultural Technologies
The problem and the solution

The knowledge gap

• Heterogeneity in the localized returns to technologies creates uncertainty
• Little evidence about the performance of recently introduced/released seeds varieties in a diversity of agroecological zones

Improving information about the performance of new maize varieties in a diversity of contexts in northern Ghana
The TAT Project
Phase I: Testing maize varieties (2015)

The design

Trial plots were set in 10 districts in the 3 northern regions

2 types of trial plots per district:
1 Mother trial
4 Baby trial

The maize varieties

- Pioneer (Adikanfo)
- PAN53 (Sika – aburo)
- Mamaba
- Sanzal Sima
- Obaatanpa
Results from the 2015 Trials
Pioneer wins the game

Mean Yields With Variance

<table>
<thead>
<tr>
<th>Location</th>
<th>Mean Yield (kg/ha)</th>
<th>Standard Deviation Between Districts</th>
<th>Standard Deviation Within Districts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mamaba</td>
<td>2000</td>
<td>500</td>
<td>200</td>
</tr>
<tr>
<td>Obaatanpa</td>
<td>3000</td>
<td>1000</td>
<td>500</td>
</tr>
<tr>
<td>Sika-Aburo</td>
<td>4000</td>
<td>2000</td>
<td>1000</td>
</tr>
<tr>
<td>Adikanfo</td>
<td>5000</td>
<td>1500</td>
<td>500</td>
</tr>
<tr>
<td>Sanzal-sima</td>
<td>3000</td>
<td>500</td>
<td>200</td>
</tr>
</tbody>
</table>
Results from the 2015 Trials
Results by district

[Graph showing maize yield by district]
Results from the 2015 Trials

Profits by Variety

Profits (GHC / Ha)

- Adikanfo: 4,500
- Sika-Aburo: 3,800
- Obaatarpa: 3,000
- Sanzal Sima: 2,800
- Mamaba: 2,600
Results from 2016 Farmers’ Experiment

Performance of varieties

Pioneer is still the best performing variety, but...

- Sika-aburo
- Mamaba
- Obaatanpa
- Adikanfo
Results from 2016 Farmers’ Experiment
Possible explanations for lower yields

Use of inputs

Misreporting in plot size

<table>
<thead>
<tr>
<th>Measure</th>
<th>Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reported by farmer</td>
<td>2.93</td>
</tr>
<tr>
<td>GPS measure</td>
<td>2.76</td>
</tr>
<tr>
<td>Difference</td>
<td>0.17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Fertilizers (bags/ha)</th>
<th>Seeds (kg/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>2.76</td>
<td>2.93</td>
</tr>
<tr>
<td>2016</td>
<td>2.59</td>
<td>2.75</td>
</tr>
<tr>
<td>2016</td>
<td>2.59</td>
<td>2.75</td>
</tr>
</tbody>
</table>
Implications for Maize productivity in Northern Ghana

Possible explanations for lower yields
Conclusions

- **Pioneer (Adikanfo) is a high-yield technology** and it would be a **profitable investment** in nearly all cases;

- Neither Sanzal-sima nor Mamaba perform better than farmers’ variety Obaatanpa in 2015 rainy season;

- Performance of a seed variety can vary substantially when cultivated under the typical farmers’ management and not in ideal conditions.
Policy implications

- One-measure-fits-all approach doesn’t work

- Nonetheless, some varieties have more consistent returns than others

- Adoption of seeds without adequate knowledge and complementary inputs is going to produce an boost in production which is below the potential
Thank you
Questions?