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Abstract

Crop insurance markets have the potential to improve the welfare of agricultural
households but they have largely failed to develop. Information asymmetries may
explain this market failure, but very little evidence is available on the relative im-
portance or underlying mechanisms of the different dimensions of this asymmetric
information. I separately identify and quantify information asymmetries in crop
insurance in the Philippines. I designed and implemented a field experiment that
first elicited farmers’ choices of which plots they would prefer to insure, and then
randomly allocated insurance to farmers and plots, generating across- and within-
farm variation in which plots were insured. I model jointly the farmers’ choice of
a plot for insurance and their resource allocation across plots. In addition to ad-
verse selection and moral hazard, the model implies the possible presence of an
interaction between the two: that is, selection on plot-specific benefits from moral
hazard behavior. I find strong evidence for adverse selection and moral hazard,
and I find evidence that farmers select both on the inherent riskiness of plots and
on the plot-specific benefits from moral hazard behavior. Further, possibly due to
moral hazard, I find that farmers use less fertilizer on insured plots, suggesting that
subsidies for this type of insurance may reduce aggregate investment.
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1 Introduction
Agricultural incomes are highly volatile, in part due to natural hazards. In response,
farming households shift to safer but lower-return production technologies and smooth
consumption through borrowing, saving or other financial arrangements. Both strategies
can be very costly and there is ample evidence of serious welfare consequences when
households have limited ability to smooth consumption.1 While crop insurance markets
have the potential to protect households against some of the worst shocks, such markets
have largely failed to develop.2 Information asymmetries may explain this market failure,
but empirical evidence is scarce.3 More importantly, very little evidence is available
on the relative importance or underlying mechanisms of the different dimensions of this
asymmetric information. Although some progress has been made in insuring agricultural
production risk that can be captured by aggregate variables (such as a rainfall index),
this is not the most important part of production risk in many contexts. Therefore, a
better understanding of the nature of this asymmetric information is fundamental for
both policy making and better contract design.

In this paper, I combine data generated by a randomized field experiment with a
model of farmers’ insurance choice and resource allocation decisions to identify informa-
tion asymmetries in crop insurance in the Philippines. The experiment and data collection
strategy are explicitly designed to separate out the multiple dimensions of asymmetric in-
formation. I account for unobserved variation in preferences and constraints by collecting
data on multiple plots for each farmer. By eliciting farmers’ relative demand for insurance
on plots in their portfolio and by inducing random variation in insurance coverage across
a farmers’ plots, I disentangle selection on risk characteristics of plots from moral hazard.
Using this approach, I am able to 1) separately identify and quantify adverse selection and

1On farmers’ production choices, see for example Rosenzweig and Binswanger (1993) and Dercon
(1996). On limited consumption smoothing, see for example Fafchamps and Lund (2003); Rosenzweig
and Binswanger (1993); Maccini and Yang (2009); and Kazianga and Udry (2006). For a larger review,
see Morduch (1995).

2Private crop insurance markets for certain natural hazards have developed (e.g., for hail damage).
Government subsidized programs also exist in many countries. In the US, annual subsidies for crop
insurance are currently about 9 billion dollars (GAO, 2012).

3A very extensive literature analyzes the reasons for the absence or underperformance of financial
markets in developing countries (see f.e., Hoff and Stiglitz (1990); Besley (1994); Conning and Udry
(2007)). In particular, the seminal contributions of Stiglitz and Weiss (1981) and Rothschild and Stiglitz
(1976) show how adverse selection can cause market failures in credit and insurance markets, respectively.
In the case of crop insurance, previous research (mostly based on markets in the US and Canada) has
identified adverse selection, moral hazard and spatial co-variability of risk as the main culprits for the
failure of private markets and public schemes (L Hueth and Hartley Furtan, 1994; Miranda and Glauber,
1997; Just et al., 1999; Makki and Somwaru, 2001).
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moral hazard, 2) determine that this adverse selection is caused by a deliberate selection
on damage risk and not by a correlation between risk and preferences or constraints and 3)
disentangle selection on the inherent riskiness of plots from selection on the plot-specific
ability to engage in moral hazard.

Information asymmetries are very hard to identify empirically using data normally
available to insurance companies and researchers. First, it is very hard to identify moral
hazard without some exogenous shift in coverage. Second, since both preferences and risk
type are (at least partly) unobserved, it is hard to identify to what degree selection is
based on private information on risk type versus private information on preferences. This
difference has crucial implications for the insurance provider and for market development.
Selection on risk type leads to higher payouts and can cause the market to break down
(Rothschild and Stiglitz, 1976), while selection on preferences is less likely to be a cause
for higher payouts. In fact, in many markets (such as automobile insurance and life
insurance), selection on risk preferences is likely to counteract selection on risk type
(de Meza and Webb, 2001; Cutler et al., 2008). Third, it is very hard to identify any
possible interactions between adverse selection and moral hazard. An example of this in
our context would be when a farmer chooses to buy insurance on a plot that is far from
her home, explicitly because, once the plot is insured, she can save a substantial amount
of effort in preventing damages.

Although the experimental design is informed by the theory, for the purpose of ex-
position I will first discuss the context and the experimental design, and then illustrate
the model. In the Philippines a government owned insurance company offers crop in-
surance for rice crops. This insurance covers crop losses due to specific natural hazards
(such as typhoons, pests and crop diseases). Payments are based on an ex-post damage
assessment by an agent of the insurance company. Since the insurance pays out based
on the harvest losses on each particular plot, there is good reason to expect substantial
asymmetric information. The experiment was based on three stages. In the first stage, I
elicited farmers’ choices of which plot, if they could choose only one, they would prefer
to have insured. The farmers were told this plot would have a higher chance of receiving
free insurance in a lottery. In the second stage, I randomly chose farmers to receive free
insurance on a subset of their plots. In the third stage, I randomly selected which of their
plots received insurance, but allowed their first choice plots to have a higher chance of
receiving insurance coverage. This generated across- and within-farmer variation in which
plots were insured and provided an incentive for truth-telling in the first stage. Finally, I
combined the data generated through this process with geospatial data on the locations of
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plots and environmental characteristics, administrative data from the insurance company
and comprehensive survey data.

The goal of this paper is to understand the behavior of farmers when faced with
the incentives generated by a crop insurance contract of this type. The focus is on the
degree and type of asymmetric information that leads to excess payouts by the insurance
company. Since the insurance is provided for free, I do not study demand and therefore
do not consider the partial or general equilibrium of the insurance market. Although
studying insurance demand in this context would be worthwhile, there is no competitive
equilibrium to study precisely because the market has failed to develop (except for the
political economy equilibrium of government subsidized insurance). The fact that no
equilibrium exists is not a limitation for this study but rather is the motivation.

I explicitly model behavior in the experiment and by using this model to understand
the data I provide insights into the extent and type of private information in this context.
Specifically, I model the joint determination of the plot choice decision and the farmers
allocation of preventative effort across plots. I allow for heterogeneity in both the inherent
riskiness of plots and in the plot-specific cost of effort. Farmers select plots taking into
account their endogenous effort response to both plot characteristics and insurance. If
the cost of effort is prohibitively large on all plots, then farmers select plots that are large
and have high inherent riskiness. If the cost of effort is lower, allowing for a sizable effort
response by the farmer, then farmers face a tradeoff between choosing plots that have
high expected damages and those on which they can save a relatively large effort cost if
insured. The model therefore implies that, in addition to classic moral hazard, two types
of adverse selection may be present. First, selection on “baseline risk”; that is, selection
on the expected damages on a plot, taking into account the endogenous effort response to
plot characteristics but not the endogenous response to insurance. And second, “selection
on moral hazard”; that is, selection on the plot-specific anticipated effort response to
insurance. These effects are defined precisely in the model.4

In the first empirical section I use the experiment to separately estimate adverse
selection in plot choice and classic moral hazard. I estimate moral hazard by comparing
the damage experience on randomly insured and uninsured plots of the same farmer and
estimate adverse selection by comparing damages on the farmers’ first choice plot to
damages on other plots of the same farmer. I find strong evidence for both. Farmers
select plots that are prone to floods and crop diseases and this leads to about 20% higher

4Einav et al. (2013) also study this type of selection in the US health insurance market and coined
the term “selection on moral hazard.”
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damages on first choice plots compared to the farmers’ other plots. To investigate moral
hazard, I separate the harvest losses into two components: loss due to typhoons and floods,
and loss due to pests and crop diseases. This distinction is motivated by expectations
at the start of the project that pests and crop diseases would be more preventable than
typhoons and flood.5 I find evidence for moral hazard in the prevention of pests and
crop diseases. Harvest loss due to these causes is about 24% higher on randomly insured
plots compared to uninsured plots. In contrast, I find no evidence of moral hazard in
the prevention of typhoon and flood damage, providing some confidence that the earlier
estimate is not due to reporting bias.

In the second empirical section I investigate the impact of insurance on investment, as
measured my fertilizer expenditures, and use the across-farm randomization to investigate
whether insurance on one plot has implications for farming decisions on the farmers’
other plots. I find that farmers use less fertilizer on insured plots. This is consistent
with moral hazard, since under moral hazard insured plots are higher risk than uninsured
plots, and provides further confidence that the observed moral hazard effect is indeed
identifying moral hazard. This also implies that subsidies for this type of insurance may
reduce aggregate investment. I do not find any evidence that insurance on one plot
induces higher investment on the farmers’ other plots. This evidence therefore does not
support the presence of substantial wealth effects (from the reduced investment on insured
plots) nor important background risk effects (that is, incentives for greater investment on
uninsured plots through reduced background risk from insured plots).

In the third empirical section I develop an empirical strategy to disentangle selection
on what I have termed “baseline risk” from “selection on moral hazard.” The strategy uses
plot characteristics collected at baseline, which predict about 37% of the observed adverse
selection effect, to construct measures of predicted damages separately for randomly in-
sured and uninsured plots. I then study whether selection is based on the predicted values
for uninsured plots (i.e., baseline risk) or on the difference (i.e., selection on moral haz-
ard). The difference is computed by subtracting predicted values on control plots from
predicted values on insured plots and represents the predicted moral hazard based on
baseline characteristics. I find that baseline risk is the key determinant of selection, but
that farmers select on both dimensions.

This paper builds on previous experimental approaches to identify information asym-
metries, including the RAND Health Insurance Experiment (Manning et al., 1987) and

5The insurance company makes the same distinction and offers an insurance package that only covers
typhoons and floods as well as offering a comprehensive package the covers the full range of damages (all
insurance coverage in this study was the comprehensive coverage).
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Karlan and Zinman (2009)’s experiment on consumer credit in South Africa. As in both
of these experiments I use random variation to identify moral hazard. However, by com-
bining selection and randomization across production units within the same farm, and
complimenting these with comprehensive data collection, I am able to overcome many of
the limitations of the earlier work. First, I am able to isolate selection on plot risk charac-
teristics from selection on farmer level characteristics (such as preferences or constraints).
This is important as many papers that study adverse selection in insurance markets have
found little evidence of adverse selection or have even found evidence of advantageous
selection(de Meza and Webb, 2001).6 Second, Karlan and Zinman (2009) note that selec-
tion may be based on unobserved ability to engage in moral hazard but they are unable
to disentangle this from selection on risk type, as I do in this paper. This has been done
for an insurance market in only one existing paper, a forthcoming paper byEinav et al.
(2013). The present paper complements the work by Einav et al. by identifying this effect
using experimental variation and data on multiple insurable units (i.e., plots) per deci-
sion maker in contrast to the difference-in-difference and structural estimation techniques
employed by Einav et al. Third, I am able to identify a causal source of moral hazard
heterogeneity through the random variation in distance between insured and uninsured
plots induced by the experiment. Overall, I find that information asymmetries in crop
insurance are pervasive and economically significant, operating through the channels of
adverse selection and moral hazard, and through the interaction of the two. Finally, I
experimentally identify the effect of insurance coverage on investment in the presence of
moral hazard. I am not aware of a previous experimental identification of this effect and,
as noted earlier, the findings imply that subsidies for this type of insurance may have
unintended negative consequences for aggregate investment.7

The paper proceeds as follows. For expositional purposes, I will first describe the
insurance contract and the experiment in Section 2. I will then present the model and
derive empirical implications in Section 3. In Section 4 I discuss the implementation,
describe the data and examine the integrity of the experiments. Next I present the three
empirical sections. In Section 5 I separately estimate adverse selection and moral hazard,
in Section 6 I investigate resource allocation over the farmers’ portfolio of plots, and in

6There is a sizable literature confirming this possibility empirically with results largely diverging
by insurance type. Health insurance and annuity markets tend to show adverse selection while the
evidence points to advantageous selection in life and long-term care insurance (see Cutler et al. (2008)
and references within, e.g., Cawley and Philipson (1999); Finkelstein and Poterba (2004); Finkelstein and
McGarry (2006); and Fang et al. (2008)).

7This contrasts with recent work that finds that insurance leads to increased investment when not
subject to moral hazard, e.g., Karlan et al. (2012).
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Section 7 I disentangle selection on baseline risk from selection on moral hazard. Finally,
I conclude in Section 8.

2 Insurance Contract and Experimental Design

2.1 Insurance Contract

Agricultural production in the Philippines is susceptible to not only the usual threats of
floods, droughts, pests and crop diseases, but also the arrival of more than 15 typhoons or
tropical cyclones per year. A government-owned company, the Philippines Crop Insurance
Corporation, offers subsidized crop insurance to rice farmers throughout the Philippines.
Take-up is low and no private market has developed.

The insurance offered by PCIC is a multi-peril crop insurance that covers all the major
specific natural hazards in this context. This includes typhoons, floods, droughts, and
various pests (e.g. rats and various insects) and crop diseases (e.g. tungro, a crop disease
spread by insects).8 Any particular damage event must cause at least 10% loss of harvest
to be eligible for a claim. If a damage event causes more than 10% damage, an insured
farmer files a Notice of Loss to the company, which sends an insurance adjuster to verify
damages. The contract pays out per hectare of insured land in proportion to the share of
harvest lost to specific causes. In this context, typhoons and floods are the major source
of damages to crops, accounting for about 60% of indemnities, while various pests and
crop diseases account for about 40%.

2.2 Experimental Design

I introduce two key features into the design that allow me to disentangle many of the rele-
vant information asymmetries: 1) I take advantage of the fact that farmers in this context
routinely till multiple plots of land and designed the experiment and data collection to
consider the plot as the base unit of analysis and 2) I introduce experimental variation
across plot within the same farm and obtain incentivized choices at the plot level.

The study design for each season was the following:

Step 1: Each farmer was asked, if they could choose one plot, which plot they
8The insurance also covers rare events such as volcanic eruptions and earthquakes but excludes some

minor pests such as birds and snails. We ignore damages from birds and snails in the analysis. The amount
of damages from birds are trivial. Losses from snails are non-trivial but small, and occur primarily when
plants are seedlings (before transplanting) so it is impossible to assign per-plot damage rates.
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would prefer to have insured. They were told that the plot they chose would have
a higher chance of receiving free insurance in a lottery.

Step 2: Baseline survey (if not baselined in earlier seasons)

Step 3: Farmers were then entered into a lottery and randomly allocated to three
groups:

Group A (66.5%; Full Randomization): Received insurance on a random half
of plots.

Group B (3.5%; Choice): Received insurance on first-choice plot and a random
half of remaining plots.

Group C (30%: Control): Received no insurance.

Step 4: Two follow up surveys, one after planting and another after harvest.

Group B is a truth-telling mechanism. It ensures that it is incentive compatible for the
farmer to reveal her true preference. The farmer-level randomization was stratified by
geographic location.9 Insurance was allocated to plots in Group A using block random-
ization within the farm such that half of the farmers’ plots received insurance. Farmers
with an odd number of plots, n, were randomly selected to receive insurance on n−1

2
or

n+1
2

plots. After insurance had been allocated to the first-choice plots of farmers in Group
B, their remaining plots were randomly allocated insurance using the same procedure as
in Group A. A baseline was conducted between Steps 1 and 2. Two follow-up surveys
were conducted in each season, one after planting and another after harvest.

The study was explicitly designed to separately estimate adverse selection and moral
hazard. Figure 2 depicts the basic identification strategy. To identify adverse selection
I compare the first-choice plot of the farmer to her other plots. I will test this both
by comparing measures of predicted damages, actual damages and payouts. To identify
moral hazard I compare insured and uninsured plots of farmers in the fully random group
(Group A). In principle, the design allows me to identify moral hazard separately for first-
choice plots and for other plots. I will discuss the identification of separate components
of adverse selection (as depicted in the Figure 3) in the Sections 3.7 and 7.

9In the first season, the experiments were conducted in a relatively small geographic location and we
stratified by the number of plots instead.
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3 A Model of Preventative Effort and Insurance Choice
on a Portfolio of Plots

3.1 Introduction and Summary of the Model

In this section, I develop a model describing optimal decisions of farmers in the experiment.
In the model, farmers are faced with the possibility that they may lose part of each plot’s
harvest to a natural hazard. Farmers make two decisions. First they choose one plot to
designate as their “first choice”. Next they allocate preventative effort (to reduce crop
loss from natural hazards) to each of their plots. I assume that plot characteristics and
effort levels are unobserved by the insurance provider. This is consistent with the context:
per-hectare prices only depend on the season and the geographic area; furthermore, no
monitoring of farm practices (such as pesticide or insecticide use) takes place. The study
area is fully contained in one pricing area, so all farmers face the same per-hectare prices.
Of course, all insurance is free in the experiment, and the tradeoff that the farmer faces
in selecting a plot for insurance is the opportunity cost of not insuring one of her other
plots.

I consider two versions of the model for insurance choice. In the first, farmers are
partially myopic such that they do not take into account their possible moral hazard
response when choosing a plot for insurance. In the second, farmers are more sophisticated
and fully take into account their anticipated endogenous effort response to insurance when
making their insurance choice. In the first scenario, the insurance decision of the farmer
is straightforward: she chooses the plot that maximizes the expected payout from the
insurance company. Since the farmer could choose one plot, regardless of size,10 she
maximizes the payout by choosing the plot that maximizes the product of plot size and
the expected share of harvest lost.

In the second version, the farmers’ insurance choice takes into account the her antici-
pated effort response to the insurance coverage. In this case, farmers derive two types of
benefits from insurance coverage on a specific plot: the payout in case of harvest loss and
the ability to save some cost of effort. This implies that farmers may select not only on
the inherent riskiness of plots but also on the ability to engage in moral hazard.

The key feature of the experiment’s design is that the insurance choice is only prob-
abilistic. The plot chosen may or may not get insurance and insurance is randomly

10Within the limit that only plots between .25 and 2.5 hectares were eligible to be included in the
experiment.
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allocated to plots (though the first-choice plots have a higher chance of being insured).
Given this feature of the data, I start by modeling insurance choice and effort as a joint
decision for the purpose of studying insurance choice. I then consider the insurance to
be exogenously determined to study moral hazard and extend the model to consider to-
gether the farmers’ effort and variable investment decisions. In the model I assume that,
conditional on plot characteristics and effort, shocks are uncorrelated between plots of
the same farmer and that the farmer maximizes a mean-variance utility. This implies
that effort and investment decisions on plot j of farmer i are independent of whether plot
j′ of the same farmer is insured. These assumptions provide tractability, but of course
shocks are not uncorrelated across plots. In the empirical section, this issue is addressed
both through the design of the experiment (i.e., plot randomization) and through data
collection (especially the collection of spatial coordinates of plots, allowing spatially cor-
rected standard errors). However, even with independent shocks across plots the farmers
input decisions on plot j are not independent of whether plot j′ is insured for general util-
ity functions. The design of the experiment, in particular the two-stage randomization
procedure, allows us to test these implications of the model – that is, whether reducing
production risk on plot j has implications for production decisions on plot j′. This can
be thought of as a test of whether background risk influences investment decisions. 11

3.2 Setup and Maximization Problem

Consider farmers, indexed by i, each farming a portfolio of N plots, indexed by j. I omit
the farmer subscript when possible. Plot j produces a maximum output of 1 per hectare
(I relax this assumption in Section 3.5) and is Aj hectares in size. Some of this output
may be lost to natural hazards. The share of harvest lost, Dj, is a random variable and
follows U [0, θj(1− ej)] where θj ∈ (0, 1] indexes the risk characteristics of the plot and
ej ∈ [0, 1] is the effort put forth to reduce damages. Let θ = (θj)

N
j=1 and e = (ej)

N
j=1. I

assume that, conditional on θ and e (which determine the support of the distribution of
11Normally background risk is thought of as in a different domain that then risk being studied, such

as considering risks to labor income as the background risk for investment decisions in the stock market
(e.g., Heaton and Lucas (2000)). In this case I consider the investment risk on one production unit as
the background risk for investment decisions on another production unit.
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losses), the harvest losses are independent random draws across plots.12 A plot may be
insured, in which case the farmer receives a payout of LDj per hectare, where L < 1 is
the per hectare insurance coverage. I denote the indicator for insurance coverage with
αj ∈ {0, 1} and define α = (αj)

N
j=1. This is now a choice variable, with the restriction

that
∑N

j=1 αj = 1, representing the choice that the farmer faces in choosing one plot as
their first choice (later on I replace α with αassigned to represent the exogenously assigned
insurance allocation).13 Therefore, profits of farmers are stochastic and given by

Π(α, e) =
∑
j

{Aj((1−Dj) + αjLDj)} − C(e) (1)

where C is the cost-of-effort function. I assume the farmers’ preferences can be represented
by a mean-variance utility over total future profits:

E [U(Π)] = E [Π]− ρV ar(Π) (2)

It is convenient to note that, given the uniform distribution for D, we have:

E [Dj|ej] = 1
2
θj(1− ej)

V ar [Dj|ej] = 1
12
θ2j (1− ej)

2

This implies that

E [Π|(α, e)] =
∑N

j=1Aj
(
1− 1

2
(1− αjL)θj(1− ej)

)
− C(e)

V ar [Π|(α, e)] = 1
12

∑N
j=1A

2
j(1− αjL)

2θ2j (1− ej)
2

12For some farmers, with two or more plots close to each other, this assumption is clearly unrealistic.
For others, with more spread out plots, it is more reasonable. For tractability of the model I use this
assumption for now. In the empirical section I take advantage of geospatial data on plots to investigate
how the extent of information asymmetry is affected by how spread out farms are; however, even with
this geospatial data is is hard to separately identify spatial correlation in inherent riskiness from spatial
correlation in shocks.

13The farmers choice is only probabilistic but I assume that the farmer chooses a plot in the same way
as she would do if insurance were to be assigned with probability 1.
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The farmers maximization problem is to choose one plot as her preferred plot for insurance
and then choose effort level on each plot conditional on its insurance coverage:

max
α,e

N∑
j=1

[
Aj

(
1− 1

2
(1− αjL)θj(1− ej)

)
− ρ

1

12
A2
j(1− αjL)

2θ2j (1− ej)
2

]
− C(e) (3)

subject to
∑N

j=1 αj = 1, αj ∈ {0, 1} and ej ∈ [0, 1]. The core of the research design is that
the experiment allows us to break this maximization problem into two parts, identifying
the two choice variables separately – that is, identifying insurance choice based on inherent
plot characteristics and anticipated effort allocation, and then separately (from selection)
identifying effort and investment responses to insurance. In the next section I first analyze
the optimal effort allocation as a function of insurance coverage. This both serves as an
analysis of optimal behavior once the insurance allocation in the experiment is know and
serves as input into the first stage choice problem.

3.3 Optimal Effort

Optimal effort given insurance coverage is:

ê(α) = argmax
e

N∑
j=1

[ Aj

(
1− 1

2
(1− αjL)θj(1− ej)

)

− ρ
1

12

N∑
j=1

A2
j(1− αjL)

2θ2j (1− ej)
2 ]− C(e)

The first order condition for effort is:

∂C

∂ej
= Aj

[
(1− αjL)θj

2
− ρAj(1− αjL)

2θ2j
−2(1− ej)

12

]
= Aj(1− αjL)θj

[
1

2
+ ρAj(1− αjL)θj

1− ej
6

]
=Wj

[
1 + ρWj

2(1− ej)

3

]
where Wj = Ajwj, and I define wj = 1

2
(1 − αjL)θj as the per-hectare harvest at risk

on plot j (i.e., the expected monetary loss if no effort is applied). This amount will be

12



prominent in the calculations below and I use it as a convenient shorthand.14

I assume that the per-hectare cost-of-effort function is separable and of the form
c(ej) = ψjej where ψj represents the plot-specific cost of effort. Here the ψ’s may, for
example, represent distances from home. In this case, the ψ’s are not characteristics
of the plot, per se, but from the perspective of the farmer they can be treated as plot
characteristics.15,16 Total effort costs are:

C(e) =
N∑
j=1

Ajψjej. (4)

Given this setup, effort of farmer i on plot j is a function of the farmers’ risk aversion (ρ,
omitting the farmer subscript i) and plot-level attributes: the insurance coverage (αj),
the inherent riskiness of the plot (θj), the parameter of the cost function (ψj) and area
(Aj). I show in Section A.1 that optimal effort is given by:

êj(αj, θj, ψj, Aj, ρ) =


0 if ψj ≥ wj +

2
3
ρAjw

2
j

1− 3
2

ψj−wj

ρAjw2
j

if wj < ψj < wj +
2
3
ρAjw

2
j

1 if ψj ≤ wj

(5)

where, as defined earlier, wj = 1
2
(1 − αjL)θj. Figure 1 illustrates optimal effort as a

function of the plot-specific cost of effort (ψ) for insured and uninsured plots. Effort is
lower on insured plots in the range where (1) cost of effort is large enough so that effort is
less than 1 if the plot is insured but (2) small enough so that effort is positive if the plot
is uninsured – that is, if ψ ∈ (w1, ŵ0)) in Figure 1. The model therefore implies moral
hazard over this range.

In this section we have assumed the αj’s are given. These findings therefore describe
both (1) the maximization problem the farmer faces after she learns of the insurance
allocation in the experiment and (2) the problem that the farmer expects to face during
the cropping season as she is taking her insurance choice decision. In the experiment, after

14The second order condition for a local maximum is −ρW 2
j

6 < 0, which is always satisfied.
15As the ψ’s are per-hectare costs, they may also represent scale economies when the farmer tills two

or more adjacent (or close by) plots. About 35% of the plots in the sample are adjacent to at least one
other plot of the same farmer.

16Although the model considers for now only one type of damage, in reality farmers face multiple
natural hazards, each associated with a different plot-specific cost of preventative effort. I discuss this
further in Section 5.6. The primary distinction in the paper will be between cost of effort in preventing
typhoons and floods versus pests and crop diseases. A priori, one might expect ψ to be very high for all
plots in the case of typhoons and floods, but lower (and possibly variable across plots) for pests and crop
diseases.
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ê

ψ (cost of effort)

wj
insured wj

not insured ŵj
not insuredŵj

insured

Insured

Not insured

(optimal 
effort)

Moral hazard range

Figure 1: Optimal effort, êj, as a function of the plot-specific cost of effort for insured
and uninsured plots. Here, winsured
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the farmer is informed of the insurance allocation to her plots, her problem simplifies.
Instead of the farmers problem in 3 she now maximizes only over e and α is no longer
a choice variable but is replaced by αassigned, which is exogenous and is not limited to
adding up to one over her plots. I discuss the empirical implications for analyzing moral
hazard in Section 3.7. First, I use this characterization of optimal effort allocation to
derive the optimal insurance choice.

3.4 Insurance Choice

In this section I characterize the optimal insurance choice of farmers in the experiment. I
consider and contrast two different levels of sophistication on part of the farmer. First, in
Section 3.4.1, I consider the insurance choice of a farmer that is partially myopic in that
she does not take into account her anticipated effort response to insurance and instead
chooses insurance assuming she will farm the plot in the same manner as she would
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normally do without insurance.17 Next, in Section 3.4.2, I contrast this insurance choice
with that of a more sophisticated farmer who anticipates her effort response to insurance
and takes an optimal decision with this in mind.

Before considering these two cases I first derive the value function for insurance choice.
Given the optimal effort êj(αj, θj, ψj, Aj, ρ), the utility output on plot j is:

uj(αj, θj, ψj, Aj, ρ) = Aj −
1

2
Ajwj(1− ê(αj, ψj, ρ, Aj, wj))

− ρ

12
A2
jw

2
j (1− ê(αj, ψj, ρ, Aj, wj))

2

− Ajψj ê(αj, ψj, ρ, Aj, wj) (6)

Therefore, the correct value function for insurance choice (used by the fully sophisticated
farmer) is

V (α) =
N∑
j=1

uj(αj, θj, ψj, Aj, ρ). (7)

Therefore, the sophisticated farmers’ maximization problem when choosing the plot to
designate as first choice is maxα V (α) subject to αj ∈ {0, 1} and

∑N
j=1 αj = 1. In contrast,

the less sophisticated (partially myopic) farmer bases her insurance choice decision on
plot specific utility that does not take into account the effect of insurance on effort –
that is, she assumes an effort function êmyopic(θj, ψj, Aj, ρ) = ê(0, θj, ψj, Aj, ρ) and an
associated utility (umyopicj ) and value function (V myopic), obtained by substituting êmyopic

for ê in equation 6 and substituting umyopicj for uj in equation 7. Since the second case is
simpler I reverse the discussion and consider first the optimal insurance choice of a farmer
constrained by myopia of this type.

3.4.1 Insurance choice of a (partially) myopic farmer

I now characterize the optimal choice of a farmer that is constrained by myopia in the
sense that she does not take into account her anticipated effort response to insurance.
In the below I will simply the notation by using ê0j and ê1j in place of ê(0, θj, ψj, Aj, ρ)
and ê(1, θj, ψj, Aj, ρ). The perceived utility gain from insurance on plot j for a farmer

17She does, on the other hand, anticipate how her effort level is influenced by plot characteristics. E.g.,
if a plot is of high risk of floods but this is easily prevented by low-cost effort she anticipates this and
may prefer insurance on a plot that has a medium risk of damage but for which no low-cost preventative
solution is available.
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constrained by myopia of this type is:

∆umyopic
j = umyopic

j (1, θj, ψj, Aj, ρ)− umyopic
j (0, θj, ψj, Aj, ρ)

=
1

2
AjθjL(1− ê0j)−

ρ

12
A2
jθ

2
j ((1− L)2 − 1) (8)

The first term is the expected payout on plot j if the farmer applies effort as she would
without insurance. The second term (which is positive) is the expected gain in utility
from the reduction in the variance of profits that the insurance provides in this case.

In this case, the only utility gain from insurance is the payout received and this is
maximized by choosing the plot that has the highest expected damages – that is, the
highest product of area and expected damages per hectare.18

3.4.2 Insurance choice of a fully sophisticated farmer

Consider now the full model where the farmer anticipates her effort response to insurance.
In this case, the farmer balances the gains from the expected payout against the gains
from saved effort. The payout, P , is given by

P = LAjE [Dj|θj, ψj, αj = 1] =
1

2
LAjθj(1− ê(θj, ψj, αj = 1)) (9)

and the saved effort, ∆C, is given by

∆C = ψjAj(ê(θj, ψj, αj = 0)− ê(θj, ψj, αj = 1)) (10)

It may be intuitive to suppose that this additional degree of sophistication would lead
greater adverse selection. However, since the full cost of saved effort is the product of
the unit cost (ψ) and effort it is in general ambiguous whether this leads to higher or
lower effort, and it is therefore generally ambiguous whether this type of selection leads
to higher or lower payouts for the insurance provider. The key conclusion is that this
tradeoff between payouts and saved effort exists, leading to the possibility of selection on
the anticipated moral hazard response. I will empirically investigate whether this is the

18Note that the expectations of damages are conditional on expected efforts that in turn are based
on all aspects of the model other than insurance status. In particular, the farmer anticipates any effect
that plot characteristics may have on her effort. In other words, the farmer is assumed to anticipate
farming the plot as she would normally do (without insurance). For example, if a particular plot is highly
susceptible to a particular pest but she knows that this can easily be prevented through low-cost actions
on her part, then she may prefer insurance on other plots, knowing that this will not be an issue for this
particular plot.
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case in Section 7.

3.5 Extending the Model with Productive Investment

Farmers expend effort and resources not only to prevent damages but also to increase
yield through other means. I now extend the model to allow for the use of a productive
investment input, such as fertilizer. In this section α (insurance) is not a choice variable.
This is because the goal of this subsection is to understand how effort and investment
interact in response to exogenous insurance provision and to empirically test these impli-
cations using the randomized experiment. Output on a plot when no damages occur are
now assumed to be G(fj) instead of 1, where G is increasing and concave and fj is the
amount of investment input applied to plot j. I assume the price of the investment input
is pf so that the cost function for investment is F (f) = pf

∑N
j fj. The farmers’ profit

function is now defined as

Π(e, f) =
N∑
j

{G(fj)Aj(1−Dj) + αjLDjAj} − C(e)− F (f) (11)

Using the properties of the exponential utility as before the farmers maximization problem
becomes:

max
e,f

=
N∑
j

Aj

[
G(fj)−

1

2
(G(fj)− αjL)θj(1− ej)− ρ

1

12
A2
j(G(fj)− αjL)

2θ2j (1− ej)
2

]
− C(e)− F (f) (12)

That is, the farmer jointly determines the level of effort and investment across her portfolio
of plots. Consider the FOC with respect to investment:

pf = G′(fj){Aj
[
1− 1

2
θ(1− e)

]
− 1

6
ρA2

j(G(fj)− αjL)θ
2
j (1− ej)

2} (13)

The way the insurance contract is structured, insurance coverage doesn’t impact the
marginal expected return to the investment input except through changes in effort pro-
vision. Insurance coverage does reduce the variance of returns and can therefore impact
investment directly (i.e., not through incentives for less effort provision). Given farmers
risk aversion, this direct effect provides incentives for more investment. Insurance cov-
erage also impact investment through the joint determination of effort and investment.
This channel will operate in the opposite direction. Under the most likely scenarios (see
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more precisely below), insurance provides incentives for using less effort, which leads to
higher chance of damage that in turn provides incentives for less investment. To illustrate
this, taking the derivative of 13 with respect to effort, we have:

∂2G

∂f 2

∂f

∂e
=

−pf{

>0︷ ︸︸ ︷
1

2
θjAj − 1

12
ρθ2jA

2
j


assumed small︷ ︸︸ ︷

2
∂G

∂f

∂f

∂e
(1− ej)

2 −
>0︷ ︸︸ ︷

2(G(f)− αjL)2(1− e)

}
(Aj

[
1− 1

2
θ(1− e)

]
− 1

6
ρA2

j(G(fj)− αjL)θ2j (1− ej)2)2
< 0

(14)
To obtain the final inequality I assume the first term in the bracket is small relative
to the second term. This seems reasonable since the first term is the product of two
marginal effects (on G and f) whereas the second term includes the level of G(f)− αjL

and insurance coverage is far from complete. Given that G is assumed concave, we have
∂f
∂e
> 0.
Overall the preceding discussing shows that in this model insurance coverage provides

both incentives for increased and decreased investment, and the outcome depends on which
term dominates. Empirically this implies that applying this model to an observation of
reduced investment on insured versus uninsured plots of each farmer would imply that
the second term dominates and that moral hazard in effort is causing reduced investment.

3.6 Portfolio Investment

So far I have assumed a mean-variance utility function for the farmer. It provides tractabil-
ity but is restrictive. In particular, it implies that getting insurance on one plot does not
influence the farmers decisions on her other plots. It therefore predicts that effort and
investment are identical on uninsured plots of insured farmers compared to plots of unin-
sured (control) farmers. This may be unrealistic in important ways, e.g. if the farmer
puts more weight on preventing outcomes below a certain threshold. This could be the
case if the farmer is close to subsistence level or if, as is common in the study area, she
takes out an informal production loan that has high penalties for late payment. In these
cases insurance on one plot would provide incentives for increasing investment inputs (e.g.
fertilizer) on her uninsured plots. Since those plots are not insured, there is no counter-
acting moral hazard incentive to reduce investment. In contrast to the mean-variance
case, these preferences would predict higher effort and fertilizer use on uninsured plots
of insured farmers compared to plots of uninsured (control) farmers. We test for these
differing predictions in Section 6.
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3.7 Empirical Implications

The model has implications for the empirical specifications designed to separate adverse
selection from moral hazard and those designed to understand whether selection is based
on the ability to engage in moral hazard. The first implication is that that farmers may
select on the plot-specific heterogeneity in cost of effort, possibly inducing a “selection on
moral hazard” effect. A second set of implications is caused by the fact that farmers have
an incentive to select larger plots. This implies that when studying selection based on
ex-post damages I must control for the area to prevent me from misattributing selection
on area as selection on risk characteristics (This problem arises if area and the plot specific
inherent risk or cost of effort are correlated). This also suggests that if I study adverse
selection using predicted damages (as I do in Section 7), then the correct specification
includes a term for area by itself and a term that interacts area and predicted damages.
The correct test for adverse selection in this case is to test for a positive interaction term.

4 Implementation, Experimental Integrity and De-
scription of the Data

4.1 Implementation

Under the direction of the author, Innovations for Poverty Action (IPA)19 implemented
the experiments and data collection from the spring of 2010 through mid-2012. IPA staff
invited farmers fulfilling certain eligibility criteria (described below) that were located
within the Tigman Hinagyanan Inarihan Regional Irrigation System and surrounding
communal irrigation systems in the Camarines Sur region of Bicol province in the Philip-
pines to participate in a research project on crop insurance. The implementation started
in the 2010 wet season (July - September) with a small pilot experiment with 52 farmers,
followed by full scale experiments and data collection over the following three cropping
seasons. The sample was gradually expanded, from 106 farmers with 291 plots in the dry
season (December - April) of 2010-11, to 285 farmers with 806 plots in the wet season
of 2011 and 447 farmers with 1302 plots in the dry season of 2011-12. After each round,
farmers were invited to participate in subsequent rounds. Therefore, for a subsample of
farmers and plots, we have up to 3 rounds of panel data.

19Innovations for Poverty Action (IPA) is a US-based non-profit organization that specializes in con-
ducting impact evaluations that aim to inform programs and policies to reduce poverty and improve
well-being, primarily in developing countries. See more at www.poverty-action.org.
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Eligibility Criteria and Recruiting Rice is grown in this area by owner-operators
or through a variety of informal contractual arrangements between tillers and owners.
This necessitated a clear definition of “farmer”. We defined a person to be the farmer of
an agricultural plot only if they were both (1) the principal decision maker for farming
decisions, and (2) the bearer of a majority of the production risk. Because of the design
of the experiment (involving within-farm plot randomization) we focused only on farmers
with two or more agricultural plots. We attempted to recruit as many farmers as possible
in the sample area that satisfied the eligibly criteria of farming two eligible plots within the
geographic area of the study. Plots in the study area were eligible if they were irrigated,
traditionally rice growing plots, and were of size between 0.25 and 2.5 hectares.20 We
recruited farmers principally through door-to-door canvassing and, to a lesser extent, at
regular farmer meetings. Based on administrative data from the local office of the National
Irrigation Administration, we were able to recruit about X% of farmers in this area that
fulfill the eligibility requirements.21 Overall, the study covered about Y% of agricultural
land in the key target areas.

4.2 Data

The data come from the following sources: 1) Plot choices obtained at enrollment in the
study (if a farmer participated in multiple seasons, a new choice was obtained before each
season); 2) Plot characteristics from a baseline survey; 3) Input data from mid-season and
follow-up surveys; 4) Output and damage data from a follow-up survey; 5) Administrative
data from the insurance provider; and 6) Geo-spatial data collected by study staff.

To obtain a survey measure of the share of harvest lost to the various causes, we asked
each farmer how much they lost on each plot to each cause. Because most farmers do not
have a good grasp of percentages, we asked about damages in terms of number of sacks
of palay (unmilled rice) lost. I calculate the percentage loss as:22

Loss (%) ”Type of damage” = Losses due to ”Type of damage”
Harvest+ Harvest loss from ”All causes”

20The vast majority of plots fall into this range. The lower bound is an eligibility requirement of the
insurance company. Some exceptions from this lower bound were given in the first season. We chose to
have an upper bound both because we did not want a large amount of our funds for insurance premiums
to be used for a small set of plots and because this seemed more acceptable to the community based on
conversations during the pilot phase.

21This data is somewhat outdated but allows us to have a rough sense of the sample relative to all
farmers in the area.

22These measures follow naturally from the model. Given that AG is the harvest and AGD is the loss,
a natural measure for D is D = AGD

AG = AGD
AGD+AG(1−D) =

Total loss
Total loss+Harvest .
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where losses and harvest are measured by value (in pesos) and ”Type of damage” is one of
three aggregate measures. The three aggregate measures are ”All cause” (a combination
of all categories), ”Typhoons and floods” and ”Pests and crop diseases” (A combination
of damages from rats, insects, tungro and other crop diseases).

4.3 Integrity of the Experiments

In Table 12, I report the sample sizes and attrition for each stage of the randomization.
Panel A shows attrition by treatment in the first stage of the randomization that allocated
farmers to treatment or control groups. The sample size grew from 107 farmers in the
first season to 447 farmers in the last season. Attrition among farmers is not trivial,
particularly in the control group in the first two seasons, where only about 75-79% of
farmers complete a follow-up survey, compared to 88-92% of the treatment groups. In the
last season attrition is considerably improved and 89% and 92% of control and treatment
groups complete the follow-up survey, respectively. Some follow-up surveys contain no
data on damages which leads us to have some damage data on 90% and 85% of treatment
and control groups in the last season. Overall we have some damage data from 87% and
79% of farmers in the treatment and control groups.

Panel B shows attrition of plots conditional on us having some damage data from the
farmer and conditional on the plots being in the randomization group (that is, not in
Group C and not a first choice plot of Group B). This is therefore relevant for examining
the internal validity of estimates based on the second stage randomization. Overall we
observe data on about 87-88% of these plots and this is balanced across the two treatment
groups.

Table 11 shows balance checks across the two stages of randomization. In both cases
the randomization is well balanced on baseline observables both at randomization and for
the sample of farmers and plots for which we have harvest data. The plot randomization
is also clearly orthogonal to the choice of a first-choice plot. Overall, the evidence suggests
that the integrity of the plot randomization was maintained.

5 Separate Estimation of Adverse Selection and Moral
Hazard

In this section I empirically estimate both adverse selection and moral hazard using data
on harvest losses (self reported) and payouts (from administrative data). As can be seen
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in Table 10, harvest losses due to the various natural hazards are large in this context.
All-cause harvest loss is estimated at 31% in the wet season and 21% in the dry. I separate
all-cause harvest losses into two components: loss due to typhoons and floods, and due
loss to pests and crop diseases. This distinction is motivated by expectations at the start
of the project that pests and crop diseases would be more preventable than typhoons and
floods, and by the fact that this is a categorization the company uses already.23 In the
wet seasons the losses from typhoons and floods dominate, accounting for about 80%,
while in the dry season losses are more equally distributed between typhoons and floods
(about 60%) and pests and crop disease (the remaining 40%).

5.1 Empirical Specification

I estimate two separate equations. All regressions will be based on the sample of farmers
that got insurance by random. In the first equation, I include indicators for plot choice,
insurance status and their interaction. In the second equation I constrain the interaction
term to be zero. The first equation is the following:

Dij = β0 + β1αij + β2Cij + β3Cij · αij + β4Aij + λi + ϵij (15)

Here α is an indicator for insurance coverage and C is an indicator that is one if the plot
was chosen as the farmers’ first-choice plot. The reason for the additional area control is a
possible correlation between area and plot risk characteristics. If A is positively correlated
with θij (inherent riskiness) or ψij (cost of effort), the additional control for area guards me
against the mistake of attributing selection on area to selection on other characteristics.
The second specification (see below) captures better the moral hazard effect so I defer the
discussion on moral hazard.24 The model illustrates the two conceptually different types of
selection, selection on “baseline risk” and “selection on moral hazard.” The former is based
on the farmers’ desire to choose a plot that has the maximum expected payout ignoring
any effort response. In the framework of the model, farmers select plots that maximize
the product of area (Aj), inherent riskiness (θ) and a linearly decreasing function in the
effort that is applied when the plot is not covered by insurance: Ajθj(1− ê(θj, ψj, αj = 0)).

23The insurance company offers two types of coverage: a basic coverage that covers only typhoons
and floods, and a comprehensive coverage that also includes coverage for pests and crop diseases. The
insurance studied in this paper is the comprehensive coverage.

24In this specification, β1 identifies the moral hazard effect for non-first-choice plots and β1 + β3
identifies the effect for first-choice plots. The second equation allows for a direct estimation of the
average moral hazard effect.
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This selection effect is identified by β2. To illustrate this in the framework of the model,
consider two plots of a farmer, the first-choice plot with characteristics (A1, θ1, ψ1) and a
non-first-choice plot with characteristics (A−1, θ−1, ψ−1) (for farmers with more than two
plots, think of this latter plot as a random draw of her non-first-choice plots). Then β2
identifies the selection on “baseline risk”, that is selection on the difference in damages
between first-choice and non-first-choice plots assuming no effort response to insurance
(but effort responds to plot characteristics). That is, it identifies selection on25

E [D1|(A1, θ1, ψ1), α1 = 0]− E [D−1|(A−1, θ−1, ψ−1), α−1 = 0]

=
1

2
θ1(1− ê(θ1, ψ1, α1 = 0))︸ ︷︷ ︸

Baseline risk on first-choice

− 1

2
θ−1(1− ê(θ−1, ψ−1, α−1 = 0))︸ ︷︷ ︸

Baseline risk on non-first-choice

(16)

The second selection effect is based on the farmers’ desire to save effort. The β3
coefficient captures this “selection on moral hazard” effect. This effect is precisely captured
by the difference between the moral hazard effect on her first-choice plot and the moral
hazard effect on her non-first-choice plot. This effect is the difference (c - d) in effects (c)
and (d) in Figure 3. In the framework of the model, β3 identifies selection on:

(E [D1|(A1, θ1, ψ1), α1 = 1]− E [D1|(A1, θ1, ψ1), α1 = 0])

− (E [D−1|(A−1, θ−1, ψ−1), α−1 = 1]− E [D−1|(A−1, θ−1, ψ−1), α−1 = 0])

=

Moral hazard effect on first-choice plots︷ ︸︸ ︷
1

2
θ1 [(1− ê(θ1, ψ1, α1 = 1))− (1− ê(θ1, ψ1, α1 = 0))]

− 1

2
θ−1 [(1− ê(θ−1, ψ−1, α−1 = 1))− (1− ê(θ−1, ψ−1, α−1 = 0))]︸ ︷︷ ︸

Moral hazard effect on the non-first-choice plot

=
1

2
θ1

Reduction in effort on first-choice plots when insured︷ ︸︸ ︷
[ê(θ1, ψ1, α1 = 0)− ê(θ1, ψ1, α1 = 1)]

− 1

2
θ−1 [ê(θ−1, ψ−1, α−1 = 0)− ê(θ−1, ψ−1, α−1 = 1)]︸ ︷︷ ︸

Reduction in effort on non-first-choice plots when insured

(17)

This effect may be non-zero if the farmer chooses a plot in part based on the plot-specific
cost of effort (ψ) due to her desire to save on the costs associated with effort. Her benefit
of saved effort is captured in the model for a plot j by the term ψj [ê(θj, ψj, αj = 1) -

25Remember, in the model, damages (D) are distributed as U [0, θ(1− e)] where θ is the inherent
riskiness of the plot and e is effort. This implies that E [D|θ, e] = 1

2θ(1− e).
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ê(θj, ψj, αj = 0)], which is positive. However, since this term is the product of the cost
and the difference in effort, it is in general ambiguous whether selection on this term is
associated with higher or lower damages.

The second equation, where I add the constraint that β3 (the interaction term) is zero,
is:

Dij = β
′

0 + β
′

1αij + β
′

2Cij + β
′

3Aij + λi + ϵij. (18)

This specification illustrates more clearly the moral hazard effect and the separation
between adverse selection and moral hazard. In this specification β ′

1 identifies the average
moral hazard effect. Here β ′

2 captures the adverse selection effect, except that it does not
fully capture any possible selection on moral hazard. More precisely, since insurance was
allocated at random to precisely half of the farmers’ plots (on average), β ′

2 = β2 +
1
2
β3.

That is, β ′
2 captures the full selection on “baseline risk” but only half of the “selection on

moral hazard” effect.

5.2 Results

In Table 1, I estimate Equations 15 and 18. I first discuss Columns 1, 3, and 5, which are
based on Equation 18 (no interaction term). I find strong evidence for adverse selection
in overall damages as well as separately for both typhoons and floods, and also for pests
and crop diseases. Damages are estimated to be 4.4 percentage points (95% CI: 1.8 -
7.0) greater on first-choice plots compared to other plots of the same farmer from a base
of 24%. The first-choice plots therefore have about 20% higher damages. I estimate
damages to be 17% higher due to typhoons and floods and 21% higher due to pests and
crop diseases. This evidence is consistent with evidence based on administrative data
from the insurance provider, shown in Column 7. I estimate that payouts per hectare
are about 50% higher on insured first-choice plots compared to other insured plots of the
same farmer. This estimate is quite imprecise, (95% CI: -0.8 - 14.4) and only estimated
from a small set of farmers who have their first-choice plot and at least one other plot
insured (a total of 144 farmers). I find evidence for moral hazard in preventing pests and
diseases but perhaps unsurprisingly no evidence for moral hazard in preventing typhoons
and floods. Damages from pests and crop diseases are estimated to be 1.5 percentage
points higher on insured plots compared to randomly uninsured plots of the same farmer
of a baseline of 8.4%. This translates into about 24% increase in damages.

In Columns 2, 4 and 6, I estimate Equation 15 (allowing for the interaction term). In
these regressions I lose some precision when estimating individual coefficients but the main
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effects are still statistically significant.26 In addition, although the interaction coefficient
is identified, the statistical power to test for this effect is low. If we take the estimates at
face value, they imply that damages on first-choice plots are 4.4 percentage points higher
on first-choice plots due to selection on “baseline risk,” and a further 0.5 percentage
points higher due to “selection on moral hazard.” In Section 7 I construct a test, based
on predicted damages, that is able to distinguish these two effects.

5.3 Robustness of Moral Hazard Estimates

In Table 2, I investigate the robustness of the moral hazard estimation. For comparison,
in Column 1 of Table 2, I repeat the estimation in Column 5 in Table 1 (excluding the
indicator for choice). In Column 2, I add controls for baseline risk characteristics (see
summary statistics in Table 11). This limits the sample to plots of farmers in Seasons 2
and 3 (as these were not collected in Season 1) for which I have data on each of these
plot characteristics. In Columns 3-4 I repeat the analysis in Columns 1-2, but restrict the
sample to plots that lie between the 2.5th and 97.5th percentile on the full harvest (harvest
plus damages) per hectare distribution. The reason for this restriction is to exclude plots
for which rice cultivation was not seriously attempted (below 2.5th percentile) and plots
that very likely have erroneous data (above 97.5th percentile). Those above the 97.5th
percentile (particularly those well above) are likely the result of misunderstanding between
surveyor and farmer in which the farmer mistakenly reports the combined harvest or
damages on multiple plots when asked about the outcomes for a particular plot. The
moral hazard estimate is consistent across these specifications and remains statistically
significant in all cases.

5.4 Heterogeneity by Season

The wet and dry seasons are considerably different. Damages are substantially higher
in the wet season due to the high incidence of typhoons. Columns 1 and 2 in Table 4
show that the moral hazard effect found in Table 1 is entirely based on the dry seasons.
This is in part because the high damages due to typhoons hide damages due to pests and
crop diseases (I observe a moral hazard effect in the wet season if I treat typhoon damage
as exogenous and adjust for this) but it nonetheless motivates analyzing separately the

26An F-test that tests whether both the indicator for first-choice and the interaction are significant
yields a one-sided p-value of 0.0015 (suggesting adverse selection). An F-test on whether both the
treatment effect and the interaction effect are zero for Column 6 yields a one-sided p-value of 0.043
(suggesting moral hazard).
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mechanisms of moral hazard and investment under moral hazard by type of season. I do
this in Sections 5.5 and 6.1.

5.5 Mechanisms of Moral Hazard

In this subsection I investigate the possible underlying mechanisms for the observed moral
hazard effect in preventing pests and crop diseases. There are several options, including:
1) Lower expenditure on pesticides and insecticides; 2) earlier planting on insured plots; 3)
lower use of pest, insect or diseases resistant seeds on insured plots; or 4) less preventative
effort (through the re-allocation of labor).

Lower expenditure on pesticides and insecticides is perhaps the most direct possible
mechanism. Evidence on this mechanism is presented in columns 3-6 in Table 4. I
do not find a reduction in expenditure on pesticides and insecticides. I similarly find no
difference between the number of insured and uninsured plots on which any such expenses
are reported (this includes expenses for the chemicals themselves and for labor for their
application). This may be because these expenses are quite low in the sample (insecticide
and pesticide expenses are less than 1% of total expenses for control plots).

In Columns 7-8 I investigate whether farmers plant seeds that are less resistant to
pests, insects and crop diseases on insured plots. This data is based on self-reports that
are available only in the last season. The farmer is coded as using pest, insect or disease
resistant seeds if they reported selecting the seeds because they are resistant to pests,
insects or the various crop diseases (e.g., tungro and bacterial leaf blight).27 I estimate
that insured plots are about 10-15% less likely to be planted with resistant seeds but I
can not reject the hypothesis that insured and uninsured plots are planted with the same
seeds.

Planting earlier, relative to neighbors, can lead to higher incidence of pests and insects
but harvesting early can also allow the farmer to fetch better prices for her output (and an
earlier payout). This suggests a possible moral hazard mechanism based on planting time,
where insurance induces earlier planting and higher damages by influencing the trade-off
between risk and expected profits. I find in Columns 9 and 10 that this mechanisms
seems to be operating in this environment. I estimate that farmers plant 1.2 days earlier
on insured plots. If we consider only plots that are islands (not adjacent to another plot
of the same farmer) then I estimate that farmers plant 2.4 days earlier on insured plots.

27The farmer was able to report many reasons for using these particular seeds. This included, in
addition to resistance to pests, insects and crop diseases: fast growing, drought resistant, less prone to
floods, high yielding, high quality (high market price), saline resistant, can withstand strong winds.
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This evidence is only suggestive because: 1) it is not clear to what degree each day of
earlier planting leads to higher damage risk; and 2) the proper analysis would take into
account planting times of neighboring plots. This spatial economic analysis is possible
with the available data and may be a fruitful avenue for future work.

5.6 Heterogeneity in Asymmetric Information By Geographic
Distance

It is natural to assume that the inherent riskiness of plots is positively spatially correlated.
That is, that θj and θj′ are positively correlated for two plots that are adjacent or close.
The cost of effort (in the model ψj) may also be spatially correlated. Consider two
farmers in the experiment, one with two plots adjacent (or very close) to each other and
the other with two plots some distance apart. Our expectation for the magnitude of
adverse selection and moral hazard might be smaller in both cases for the first farmer.
The adverse selection estimate may be low simply because the two plots have similar
inherent risk (i.e., similar θ) and at the same time we may detect little moral hazard
because of scale economies (promoting the farmer to treat both plots similarly) or due to
the farmers’ concern about damage on her uninsured plot through physical externalities.

In Table 3 I investigate whether this may be the case. Column 1 reproduces the main
adverse selection effect from Column 1 in Table 1 for comparison. In Column 2 I interact
the indicator for first-choice plot with the log of the average distance between plots in the
farmers’ portfolio. All log-variables in the table are standardized to zero mean and unit
variance. I estimate that the interaction term is positive, consistent with positive spatial
correlation in inherent riskiness. The first-choice plots of farmers with a portfolio one
standard deviation above the mean on log(Average Distance Between Plots) is estimated
to have 7.3 percentage points higher damages than the farmers’ other plots, compared to
the 4.8 percentage point difference between first-choice plots and other plots for farmers
at the mean of the log(Average Distance Between Plots) distribution. The difference, 2.6
(95% CI: 0.1 - 5.0), is statistically significant. This measure is very potentially correlated
with other farmer characteristics and therefore should be interpreted with caution. In
Column 3, I add interaction terms between first-choice and the respondents’ age and
quartiles of the respondents’ years of education. The estimated interaction is consistent
with Column 2 (now estimated to be 2.1 percentage points). Although further controls
could beneficially be employed, this is suggestive evidence that farmers with portfolios of
plots spread out over a larger geographic area are able to take greater advantage of their
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private information about the inherent riskiness of plots in their portfolio when selecting
a plot in the experiment.

In Columns 4 - 8 I investigate the heterogeneity in the moral hazard estimate across
farmers with more or less geographically spread out farms and across the two rice cropping
seasons (the wet and the dry season). Compared to the baseline estimate in Column 4,
as noted earlier the estimates in Column 5 show that the moral hazard effect is almost
entirely driven by the dry seasons (I have data from two dry seasons and one wet season).
In Columns 6-8 I estimate regression equations of the form:

Loss (%) Due to Pests and Diseases = α0 + α1Insuranceij
+ α2Insuranceij X log(Average Distance Between Plots)i
+ α3Insuranceij X log(Avg. Dist. Btw. Insured and Control Plots (19)
/ Avg. Dist. Btw. Plots)i
+ λi︸︷︷︸

Farmer Fixed Effect

+ϵij

As in the case for selection, log(Average Distance Between Plots) is likely correlated
with various unobserved farmer characteristics. However, the random allocation of insur-
ance to plots generates random variation in the relative average distance between insured
and control plots compared to the average distance for all plots. The α3 coefficient is
therefore identified and by the argument above (e.g. scale economies, physical external-
ities or correlated plot characteristics) I expect α3 > 0. For the full sample I find that
this is true, but the effect is not statistically significant. However, in the dry season,
which drives the overall moral hazard result, I find that this effect is both positive and
statistically significant. This suggests, therefore, that farmers are able to engage in a
greater degree of moral hazard if insured and control plots are some distance apart com-
pared to when they are adjacent (or close), suggesting a role for scale economies, physical
externalities or other related mechanisms.
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6 Moral Hazard and Investment: Testing Alternative
Models

6.1 Investment under Moral Hazard

The insurance contract does not provide incentives for investment because the payout
is based on the share of harvest lost rather than the absolute loss. In fact, because of
the inherent incentives for moral hazard, insured plots are more likely to be damaged
than other plots and given that the insurance is partial this implies that farmers have
an incentive to use less (non-preventative) variable investment (e.g., fertilizer) on insured
plots. I investigate whether this is true in Table 5. I find that farmers spend less on
fertilizer on insured plots, observing a reduction of 250 pesos of a baseline of 5300 pesos,
or about 5% (this effect is significant at the 0.05 level using a one-sided test). I find that
this effect is entirely driven by the data from the dry seasons where farmers spend 440
pesos less for fertilizer on insured plots, compared to 5200 pesos used on uninsured plots,
amounting to about 9% reduction in fertilizer application (this test is significant with p
= 0.002). The observed reduced investment in the dry season coincides with the moral
hazard effect that is also driven by the dry seasons. This is further evidence to suggest
that the moral hazard effect observed is a true effect and not the result of reporting
bias and suggests that subsidies for this type of insurance may result in lower aggregate
investment.

6.2 Testing for independence in inputs across plots

As discussed in Subsection 3.6 the assumptions of our baseline model (namely the mean-
variance utility) imply that optimal effort and investment on a farmers’ plot is unaffected
by receiving insurance on another plot in the farmers’ portfolio. In Table 6 I test whether
this prediction can be rejected. In the top panel of the table I estimate

Yij = β0 + β1Tij + β2TGj + ϵij (20)

where Y is either damages or fertilizer investment, Tij is insurance on plot j of farmer i
and TGj indicates whether the farmer is in the main treatment group (where insurance
was fully randomly allocated to plots). The farmers that got insurance on their first
choice plot by design were excluded from the estimation and I cluster the standard errors
within the strata used for farm-level randomization. The coefficient estimate for β2 is
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an estimate for the difference between uninsured plots of treatment farmers and plots of
control farmers.

Damages I estimate that total damages are 1.07 percentage point higher on uninsured
plots of farmers in the treatment group compared to plots of control farmers but, with
a standard error of 2.3, this effect is indistinguishable from zero. When I separate the
damages by typhoons/floods and pests/diseases the effects are also indistinguishable from
zero, though they are larger and operate in opposite directions. I find a negative coefficient
estimate for β2 for pests and crop diseases, suggesting a possible shift in preventative effort
from insured to uninsured plots. However, because of the high variability in damages
across farmers I do not have enough statistical power to determine whether this is a true
effect.

Investment I find a negative β2 coefficient on the amount spent on fertilizer per hectare,
equal to a drop of 150 pesos (with standard error of 310 pesos). This estimate is indis-
tinguishable from zero but I can reject a 10% increase in investment at a 5% significance
level. The data does therefore not support a model in which lower background risk due
to insurance on the farmers’ other plots leads to higher investment and suggests that the
assumptions underlying the model in Section 3 that lead to optimal farming decisions
being independent across plots may be reasonable approximation of actual behavior.

7 Selection on Moral Hazard
In this section, I test for overall adverse selection and separately for selection on “baseline
risk” and for “selection on moral hazard.” The key idea for the decomposition is presented
in Figure 3. I first compute predicted damages based on baseline information for insured
and uninsured plots separately (for farmers in the fully random group). Then I can
identify overall adverse selection by comparing the predicted damages for insured first-
choice plots to insured other plots of the same farmer (that is, effect (a) in Figure 3). This
I can disentangle into two effects: 1) selection on baseline risk by comparing predicted
damages on uninsured first-choice plots to predicted damages on uninsured other plots
(effect (b) in Figure 3) and 2) selection on intended moral hazard by taking the difference
in predicted change in damages, when moving from being uninsured to being insured
(moral hazard), between first choice plots and other plots (that is, effect (c) minus effect
(d) on Figure 3).
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In Section 7.1 I show that plot characteristics observed by me through a baseline survey
predict 37% of harvest losses. These characteristics are not observed by the insurance
company and I assume in this section that they are a good proxy for the full information
set that the farmer has about each plot. Some of these characteristics (or their proxies)
might in principle be observable by the insurance company. However, at the moment
the company does not condition prices on any characteristics, likely because they are
too expensive to collect. Although this is not the result of a competitive market this is
suggestive evidence that these characteristics are at least expensive to collect compared
to the premiums that could be sustained in this market. In Sections 7.2 and 7.3 I map
the model develop in Section 3 into estimable equations based on the above approach.
I have in mind an estimation based on the conditional logit but these equations may
be estimated with a linear model, and I will show estimates using both approaches. In
Section 7.5 I test for adverse selection using this approach and test for the presence of the
two separate components.

7.1 Baseline Characteristics Determine 37% of Selection

In Table 7 I estimate equations of the form

Dij = β0 + β1Cij + β2Xij + β3Xij1(dry season) + λi + ηij. (21)

I only use seasons 2 and 3 for this estimation since the relevant baseline characteristics
were not collected in the first season. The observables used to predict damages are
taken from the baseline and are based on a series of questions that asked “Compared to
your other plots, does this plot have low, medium or high risk of ____?,” where I ask
separately for floods, strong wind, rats and tungro (a crop disease). In addition I have
questions that asked whether the plot is easy, medium or hard to drain after heavy rains,
compared to the farmers’ other plots, and whether the plot is low, medium or high-lying,
compared to the farmers’ other plots. I combine the questions pertaining to floods (flood
risk, low-lying and hard to drain) into one index by taking the first principal component
from a PCA of three binary variables that signify that the plot is high risk for floods, is
low-lying, and is hard to drain after floods. The questions for rats and tungro are added
by using binary indicators for the medium and high categories.28

The estimated selection effect in Column 2 is 37% lower than in Column 1, where β2
and β3 are constrained to zero. In what follows of this section I use these variables to

28The question on high wind showed little variability and is not used.
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construct a measure of predicted damages that I can use to decompose the selection into
the two conceptually distinct components.

7.2 Adverse Selection Based on Baseline Characterisics

In Section 3.4, I found that if cost of effort is very high and the farmer therefore exerts no
effort in any scenario, then the farmer chooses the plot that maximizes expected payouts.
That is, given that expected damages according to the model when no effort is applied
are 1

2
Ajθj, she chooses the plot that has the highest Ajθj. In this section I test for

adverse selection by comparing this model to the null hypothesis of no adverse selection,
where instead farmers simply choose the largest plot. Based on the per-plot utility output
derived in the model (Equation 6), the utility of insurance on plot j is:

v∗j = uj(αj = 1)− uj(αj = 0) = cAjθj (22)

where c = 1
2
L is constant. Let θ̄ = 1

N

∑N
j=1 θj. Then we can decompose this utility into:

v∗j = cAj θ̄ + cAj(θj − θ̄) (23)

Now since E [Dj|θj] = 1
2
Ajθj (effort is zero), I can empirically compute the utility (up to

a scaling factor) by:
ûj = AjÊ

[
Dj|θobsj

]
(24)

where θobsj is the portion of risk that is observable to me based on the baseline character-
istics.

The empirical analog of equation 23, where I use a conditional logit with the choice
conditioned to the portfolio of each farmer, is of the form:

Λ(Cij) = α0 + α1AijÊ [D|X, I = 1] + α2AijÊ [D|I = 1] + ϵij (25)

where Cij = 1 if farmer i chose plot j as her first choice. To test the model I include a
term for area (multiplied by the overall damage rate for ease of interpretation) since, if
no adverse selection is present, farmers are predicted to choose their largest plot. Here
α1 > 0 provides a test for adverse selection. I also estimate an analogous linear model for
comparison and this shows qualitatively the same results.
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7.3 Decomposition of Selection on Baseline Characteristics

I assume now that farmers are sophisticated and take into account their endogenous
provision of effort on insured plots. Let êIj be the farmers optimal choice of effort on
plot j if the plot is insured and likewise ê0j for an uninsured plot. Now, again based on
Equation 6, the utility of insurance coverage on plot j can in this case be written as:

v∗∗j = uj(αj = 1)− uj(αj = 0) =

Utility from coverage of inherent risk︷ ︸︸ ︷
1

2
Ajθj(1− ê0j)L− ρ

12

[
(1− L)2 − 1

]
A2
jθ

2
j (1− ê0j)

2

+
1

2
Ajθj(ê

0
j − ê1j)L︸ ︷︷ ︸

Utility of coverage

for moral hazard

+
ρ

12
A2
jθ

2
j (1− L)2

[
(1− ê0j)

2 − (1− ê1j)
2
]

︸ ︷︷ ︸
Utility loss due to higher

variance through lower effort

+ Ajψj(ê
0
j − ê1j)︸ ︷︷ ︸

Utility gain from

saved effort

(26)

I can estimate the first and third terms in this utility from data and use this to test
for the presence of selection on the ability to engage in moral hazard. That is, if I
define vb = 1

2
Ajθj(1− ê0j)L and vm = 1

2
Ajθj(ê

0
j − ê1j)L then the empirical analog of these

expressions are:
v̂b = AijÊ [D|X, I = 0] (27)

and:
v̂m = Aij(Ê [D|X, I = 1]− Ê [D|X, I = 0]). (28)

To flexibly test the model, in addition to a term for area, I also add terms for vb and vm
and estimate a conditional logit (or an analogous linear model) of the form:

Λ(Cij) = α0 + α1v̂b + α2v̂m + α3Aij + α4v̂b + α5v̂m + ϵij

= α0 + α1AijÊ [D|X, I = 0] (29)
+ α2Aij(Ê [D|X, I = 1]− Ê [D|X, I = 0])

+ α3AijÊ [D|I = 1] + α4Ê [D|X, I = 0]

+ α5(Ê [D|X, I = 1]− Ê [D|X, I = 0]) + ϵij.

Now, since I include the term for area, α1 > 0 provides a test for selection based on what
could be called baseline risk, that is, on 1

2
θj(1− ê0j) = E [D|I = 0]. The last term in the

Equation 26 is positive if and only if α2 > 0. Therefore, given that ψ > 0, α2 > 0 provides
a test for selection based on the plot-specific utility of saved effort. I estimate 25 and 29
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in Section 7.5 (along with linear models for comparison).

7.4 Predicted Damages Based on Baseline Characteristics

To empirically estimate 25 and 29 I must first obtain empirical estimates of predicted
damages Ê [D|X, I = 0] (for uninsured plots) and Ê [D|X, I = 1] (for insured plots). In
Table 8 I estimate models of the form:

Dij = β0 + β1Xij + β2Xij1(dry season) + ηij (30)

separately for insured and uninsured plots of farmers in the pure randomization group
(Group A). Here X indicates the baseline characteristics used for prediction. The key
notable difference is that the indicators for medium and high risk of tungro (a crop
disease) predict damages strongly for the insured group but not for the control group.

7.5 Estimated Selection Effects

Using these predicted damages I can now empirically estimate equations 25 and 29. Table
9 presents these results. The sample for these regressions includes only farmers who were
in the full randomization group (Group A: Received insurance on half of plots at random).
The reason for this is that since the predicted values are calculated using this group, this
prevents differential attrition by first stage (farmer randomization) treatment group or
differential reporting across (farmer randomization) treatment and control groups from
affecting estimates. In Column 1, I estimate equation 25 and find strong evidence for
adverse selection. A one percentage point increase in predicted damages increases the
odds of a plot being chosen by 12%.

In Column 2, I estimate equation 29. I find very strong evidence for adverse selection
on baseline risk. I now estimate that a one percentage point increase in baseline risk
increases the odds of a plot being chosen by 13%. I also find evidence of selection on
opportunity for moral hazard and estimate that a one percentage point higher moral
hazard effect ex-post leads to a 10% greater odds of choosing a particular plot. As noted
earlier, this implies that farmers select not only on the baseline risk of plots (i.e. θ(1− ê0)
in the model) but also on the cost of effort since a positive α3 coefficient in Equation
29 implies that the farmer chooses a plot with high potential of saved effort, i.e., high
Ajψj(ê

0
j − ê1j).
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8 Conclusions
I designed and implemented a randomized controlled trial of crop insurance in the Philip-
pines to identify and quantify the different dimensions of asymmetric information in this
type of insurance. Using a model that jointly considers the farmers� choice of a plot for
insurance and their resource allocation decisions across plots, I illustrate three conceptu-
ally different information asymmetries that are relevant in this context: classic adverse
selection (on the risk profile of the plot), classic moral hazard (on preventative effort),
and the interaction of the two – that is, selection on anticipated moral hazard.

I find that all three are present in this context: 1) The plot that is selected by the
farmer as her first-choice for insurance coverage has 20% higher damages than other plots
in her portfolio, suggesting the presence of adverse selection; 2) I find evidence of moral
hazard in the prevention of pests and crop diseases – damages from these causes are 24%
higher on randomly insured than uninsured plots – but unsurprisingly, I find no evidence
of moral hazard in damages from typhoons and floods; and 3) I find that the majority
of selection is based on the inherent riskiness of plots but that farmers also select on
plot-specific anticipated moral hazard.

I find that, due to moral hazard, farmers use less fertilizer on insured plots. This high-
lights a problem with the contract structure when the coverage includes damages subject
to moral hazard (i.e., pests and crop diseases) and suggests that possible disincentives for
investment should be taken into account in the cost-benefit analysis of subsidies for in-
surance for pests and crop diseases. I don’t find any evidence to support that investment
is shifted to uninsured plots, suggesting that the reduction in background risk associ-
ated with insurance on the farmers’ other plots does not induce greater investment on
uninsured plots.

By considering these information asymmetries together I am able to illustrate the
different channels through which asymmetric information contributes to excess damages
and to understand their relative importance. In addition, by identifying empirically the
presence of selection on anticipated moral hazard, I highlight the possibility of this issue,
which may have important implications in other markets (e.g., automobile and property
insurance, and credit markets).
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Table 2: Robustness of Moral Hazard Estimates

Outcome Variable: Harvest losses (%) due to Pests and Crop Diseases
Full Sample Restricted Sample

Insurance 2.0 ∗ ∗ 1.8 ∗ ∗ 1.9 ∗ ∗ 1.6∗
(0.9) (0.9) (0.9) (0.9)

Flooding index 1.0 0.8
(0.6) (0.6)

High risk from wind 0.6 0.4
(2.8) (2.8)

High risk of rats 1.0 1.8
(1.6) (1.6)

High risk of tungro 1.7 0.7
(1.9) (1.9)

Area (hectares) 2.0 1.9 1.5 1.4
(1.5) (1.6) (1.5) (1.6)

Sample: Plots of farmers in fully
random group

Plots of farmers in fully
random group excluding
top and bottom 2.5% of
full harvest per hectare
distribution

Mean of control plots of in-
sured farmers

8.1 8.1 7.6 7.6

Num FE’s 462 455 454 446
Observations 1163 1093 1106 1040
The table explores the robustness of the moral hazard finding. Percentage loss is calculated
as Value of loss due to ’Type of cause’

Value of loss ’All causes’+Value of harvest and are based on self-reports from a follow-up survey. Full
harvest per hectare is calculated as Value of loss ’All causes’+Value of harvest

Area , see Figure 4.
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Table 7: Estimated Share of Adverse Selection Explained by Baseline
Characteristics

Loss (%) Due to:
All causes

Eq. (1) Eq. (2)
First-choice 5.2 ∗ ∗∗ 3.4 ∗ ∗

(1.4) (1.5)
Area (hectares) 2.5 3.8

(2.2) (2.4)
Plot risk characteristics No Yes
Farmer-season FE Yes Yes
Sample: Plots of farmers in the fully random group
F-test All Risk Characteristics p = 0.00
Mean of dependent variable for non-
first choice plots

23.6 23.6

Num FE’s 434 425
Observations 1128 1051
The table only includes data from Season 2 and 3 since these baseline characteristics were
not collected in Season 1. Significance: * < .1; ** < 0.05; *** < 0.01.
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Table 8: Estimation of Predicted Damages by Treatment
Group

Loss (%) Due to All Causes
Insured Plots Control Plots

(1) (2)
Flooding index 3.9∗ 6.9 ∗ ∗∗

(2.1) (2.1)
Medium risk of rats 5.2 4.2

(4.2) (4.1)
High risk of rats 5.4 0.5

(5.2) (4.8)
Medium risk of tungro 7.9∗ −1.0

(4.5) (4.2)
High risk of tungro 13.1 ∗ ∗ 3.4

(5.6) (6.0)
Season 3 X Flooding index 0.1 −4.9∗

(2.7) (2.5)
Season 3 X Medium risk of rats −6.0 −7.1

(4.6) (4.6)
Season 3 X High risk of rats −9.3 −9.0

(6.0) (5.7)
Season 3 X Medium risk of tungro −0.3 3.0

(5.3) (4.9)
Season 3 X High risk of tungro −7.0 −2.4

(7.0) (7.2)
Constant 21.6 ∗ ∗∗ 26.4 ∗ ∗∗

(2.9) (2.6)

Observations 525 526
Estimates of Equation 30 for insured (Column 1) and control (Column 2)
plots of farmers in the fully random group. The table only includes data from
Season 2 and 3 since these baseline characteristics were not collected in Season
1. Significance: * < .1; ** < 0.05; *** < 0.01.
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(Ê
(D

|X
,I

=
1)

−
Ê
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Table 10: Summary Statistics of Damages and Payouts

Wet season Dry season
Mean (SD) N Mean (SD) N

Harvest Loss (%)
All causes 31.7 (26.3) 518 21.2 (26.8) 1264
Typhoons and floods 25.6 (25.4) 518 12.0 (21.5) 1264
Pests and crop diseases 6.0 (13.5) 518 9.4 (19.9) 1267

Payouts (in USD) per hectare (insured plots) 22.9 (52.9) 208 11.8 (36.9) 512
This table shows average harvest losses based on self reports in a follow-up survey and average payout
amounts per hectare based on data from the insurance provider. Losses as a percentage of potential
harvest due to all causes are calculated as Value of loss (all causes)

Value of loss (all causes)+Value of harvest . To calculate typhoon
and flood losses I replace the value of loss in the numerator with the value of loss due to this specific
cause, and likewise for pests and crop diseases. The wet season data is based on the 2011 wet season
and the dry season data is a combination of the 2010-11 and 2011-12 dry seasons. The latter dry
season contributes about 85% of the data for the two dry seasons.
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Table 11: Summary Statistics and Treatment Balance

Summary Statistics by Treatment Group
A. Randomization of farmers

At Randomization Analysis sample
Mean Difference Mean Difference

In Insurance In Control In Insurance In Control
Group (A+B) Group (C) (p-value) Group (A+B) Group (C) (p-value)

Total enrolled area (hectares) 1.72 1.57 0.15∗ 1.71 1.57 0.14
(0.09) (0.14)

Number of enrolled plots 2.88 2.84 0.04 2.88 2.82 0.06
(0.69) (0.61)

Education (years) 10.20 10.45 −0.26 10.11 10.40 −0.29
(0.41) (0.39)

Age (years) 53.82 52.93 0.90 53.76 53.17 0.59
(0.37) (0.59)

Gender (1 = female) 0.17 0.16 0.00 0.16 0.15 0.01
(0.91) (0.68)

Observations 607 233 532 184

B. Randomization of plots
(excludes plots not randomized (Group C and 1st choice plots of Group B))

At Randomization Analysis sample
Mean Difference Mean Difference

Insured Control (p-value) Insured Control (p-value)
Is first choice plot (1 = yes) 0.33 0.33 0.00 0.34 0.34 0.01

(0.84) (0.73)
Area (hectares) 0.59 0.60 −0.02 0.59 0.60 −0.01

(0.39) (0.62)
Owns plot (1 = yes) 0.23 0.25 −0.02 0.20 0.22 −0.02

(0.36) (0.51)
Flooding index (unit SD) 0.02 −0.02 0.04 −0.01 −0.04 0.03

(0.40) (0.59)
High Rat Risk (1 = yes) 0.19 0.21 −0.02 0.20 0.22 −0.02

(0.23) (0.42)
High Tungro Risk (1 = yes) 0.15 0.14 0.01 0.16 0.15 0.01

(0.63) (0.60)
High Wind Risk (1 = yes) 0.04 0.04 −0.00 0.05 0.05 −0.00

(1.00) (0.87)
Observations 852 852 683 677

This table shows summary statistics by treatment condition and tests for treatment balance.
Observations are given for the full sample. Some rows are based on a smaller sample due
to missing values.
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Graphs
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Figure 2: Identification of adverse selection and moral hazard
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Figure 3: Decomposition of adverse selection
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Figure 4: Histogram of full harvest (Harvest + Damages) per hectare for all seasons. The
two vertical lines mark the 2.5th and 97.5th percentile. For some robustness regression
specifications I exclude plots that fall below the 2.5th or above the 97.5th percentile. The
reason is to exclude plots for which rice cultivation was not seriously attempted (below
2.5th percentile) and plots that very likely have erroneous data (above 97.5th percentile).
Those above the 97.5th percentile (particularly those well above) are likely the result of
misunderstanding between surveyor and farmer in which the farmer mistakenly reports
the combined harvest or damages on multiple plots as that from one particular plot.
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A Model Derivations

A.1 Interior First Order Condition for Effort

The first order condition for effort is:

∂C

∂ej
= Aj

[
(1− αjL)θj

2
− ρAj(1− αjL)

2θ2j
−2(1− ej)

12

]
= Aj(1− αjL)θj

[
1

2
+ ρAj(1− αjL)θj

1− ej
6

]
=Wj

[
1 + ρWj

2(1− ej)

3

]
where Wj =

1
2
Aj(1− αjL)θj. The first order condition for effort implies that:

Ajψj =Wj

[
1 + ρWj

2(1− ej)

3

]
⇔ ρWj

2(1− ej)

3
=
Ajψj
Wj

− 1

⇔ 1− ej =
3Ajψj
2ρW 2

j

− 3

2ρWj

⇔ ej = 1− 3Ajψj
2ρW 2

j

+
3

2ρWj

⇔ ej = 1− 3

2

ψj − wj
ρAjw2

j

(31)

For an interior solution we must have ej ∈ (0, 1). This implies for an interior solution we
must have

ej > 0 ⇔ ψj < wj +
2

3
ρA2

jw
2
j (32)

and
ej < 1 ⇔ wj < ψj. (33)
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A.2 Comparative statics

If the solution is interior, the comparative statics are the following:

∂e

∂θj
=

∂e

∂Wj

∂Wj

∂θj

=

[
−(−2)

3Ajψj
2ρW 2

j

− 3

2ρW 2
j

]
(
1

2
Aj(1− αjL))

=
6Ajψj − 3Wj

2ρW 3
j

(
1

2
Aj(1− αjL)) > 0 (by 33) ∂e

∂ψj
= − 3Aj

2ρW 2
j

< 0 (34)

∂ê

∂Aj
> 0 (35)

∂e

∂ρ
=

3(Ajψj −Wj)

4ρ2W 2
j

> 0 (36)

(37)

That is:

1. ∂ê
∂θj

> 0 (effort is increasing in the inherent riskiness)

2. ∂ê
∂ψj

< 0 (effort is decreasing in cost of effort)

3. ∂ê
∂Aj

> 0 (effort is increasing in area)

4. ∂ê
∂ρ
> 0 (effort is increasing in risk aversion)

These comparative statics also apply at the lower corner – that is, for the probability that
effort is positive. More formally, if ψ follows a distribution F , we define ψ̄j =

3Wj+2ρW 2
j

3Aj

and pj = Prob(êj > 0) = Prob(ψj < ψ̄j) = F (ψ̄j), then ∂pj
∂θj

> 0, ∂pj
∂ρ

> 0 and ∂pj
∂Aj

> 0.
Then

∂p

∂w
=
∂F

∂w
= F ′(ψ̄)

3 + 4ρW

3A
> 0 (38)

∂p

∂θ
= F ′(ψ̄)

3 + 4ρW

3A

1

2
A(1− αL) > 0 (39)

∂p

∂ρ
= F ′(ψ̄)

2W 2

3A
> 0 (40)

∂p

∂A
= F ′(ψ̄)

1

6
ρθ2(1− αL)2 > 0 (41)
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At the upper corner, the probability that êj = 1 is increasing in θj and wj but unaf-
fected by ρ or Aj. Then

∂q

∂w
= F ′(ψ̂) > 0 (42)

∂q

∂θ
= F ′(ψ̂)

1

2
A(1− αL) > 0 (43)

∂q

∂ρ
= 0 (44)

∂q

∂A
= 0 (45)

A.3 Derivation of Optimal Insurance Choice for a Partially My-
opic Farmer

In this section I show that the optimal insurance choice of a farmer that does not anticipate
her endogenous effort response to insurance is to choose the plot that has the highest
expected payout. I first define a loss function, Λ, that represents the total harvest losses
net of insurance payouts and net of effort costs used to prevent damages. Define

Λ(α, θ, ψ,A, ρ) =
N∑
j=1

Ajwj(1− ê(αj, θj, ψj, Aj, ρ))

+
ρ

3
A2
jw

2
j (1− ê(αj, θj, ψj, Aj, ρ))

2

+ Ajψj(ê(αj, θj, ψj, Aj, ρ)) (46)

With this definition, total profits are equal to potential harvest less total losses: Π(α, θ, ψ,A, ρ) =∑N
j=1Aj − Λ(α, θ, ψ,A, ρ). Since the first term is not impacted by the farmers’ actions,

she chooses insurance to minimize costs (effort and damages) from natural hazards:

α̂ = argmin
α

Λ(α, ψj, ,ρ,A,w) (47)

Since the farmer does not take into account her anticipated moral hazard response to
insurance then she chooses a plot for insurance assuming she will apply effort equal to
ê(0, ψj, ρ, Aj, wj) on plot j (i.e., effort as if the plot will not be insured). Below I will use
êj0 as a shorthand for ê(0, ψj, ρ, Aj, wj). I define the function λ by λ(x, y) = 1

2
xy+ ρ

12
x2y2.
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Then

Λ(α, θ, ψ,A, ρ) =
N∑
j=1

Aj

{
Ajwj(1− êj0) +

ρ

3
A2
jw

2
j (1− êj0)

2 + Ajψj ê
j
0

}
≡

N∑
j=1

λ(Ajθj(1− êj0), (1− αjL))−
N∑
j=1

Ajψj ê
j
0

Since
∑N

j=1Ajψj ê
j
0 is independent of the insurance choice the λ function will determine

the plot chosen. Now consider two plots, h and l with Ahθh(1− êh0) > Alθl(1− êl0). I will
show that plot h is chosen as first choice plot if this inequality holds for all other plots l
in the portfolio. Let Λ((αh = 1, α−h = 0)) represent the total loss if plot h is insured but
all other plots are not insured. Now the difference in total losses between choosing plot h
and plot l for insurance is

Λ((αh = 1, α−h = 0))− Λ((αl = 1, α−l = 0))

= λ(Ahθh(1− êh0), (1− L))− λ(Alθl(1− êl0), (1− L))

+ λ(Alθl(1− êl0), 1)− λ(Ahθh(1− êh0), 1)

≡ M(Ahθh(1− êh0)) (48)

where I define the function M relative to a given plot l. Now to show that plot h will be
chosen I must show that M(Ahθh(1− êh0) < 0. Now we have

∂λ(Aθ(1− ê0), (1− αL))

∂Aθ(1− ê0)
=

1

4
(1− αL) +

ρ

6
Aθ(1− ê0)(1− αL)2 > 0

∂λ(Aθ, (1− αL))

∂(1− αL)
=

1

4
Aθ(1− ê0) +

ρ

6
(Aθ(1− ê0))

2(1− αL) > 0

∂2λ(Aθ, (1− αL))

∂Aθ∂(1− αL)
=

1

4
+
ρ

3
(Aθ(1− ê0))(1− αL) > 0 (49)
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Given that M(Alθl(1− ê0)) = 0 we have

M(Ahθh(1− êh0)) =M(Ahθh(1− êh0))−M(Alθl(1− êl0))

=

∫ Ahθh(1−êh0 )

Alθl(1−êl0)

∂M(s)

∂Aθ(1− ê0)
ds

=

∫ Ahθh(1−êh0 )

Alθl(1−êl0)

(
∂λ(s, 1− L)

∂Aθ(1− ê0)
− ∂λ(s, 1)

∂Aθ(1− ê0)

)
ds

= −
∫ Ahθh(1−êh0 )

Alθl(1−êl0)

(
∂λ(s, 1)

∂Aθ(1− ê0)
− ∂λ(s, 1− L)

∂Aθ(1− ê0)

)
ds

= −
∫ Ahθh(1−êh0 )

Alθl(1−êl0)

∫ 1

1−L

λ(s,m)

∂s∂m︸ ︷︷ ︸
>0 (by 49)

dmds

< 0

Therefore farmers prefer the plot with the largest Aθ(1 − ê0). That is, since expected
damages per hectare on the plot when not insured are equal to 1

2
θ(1 − ê0) this implies

that the farmer chooses the plot that has the highest expected payout (area times expected
damages per hectare).
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